Search results for 2019 International Pressure Injury Guideline: Wound care

Identified in pressure injury searches
- Identified citations
 - **n=3,085**

Excluded after screening title/abstract
- Duplicate citations
- Included in previous guideline
- Not related to pressure injuries
 - **n=8,128**

Identified in topic-specific key word searches
- Identified as providing direct or indirect evidence related to topic and critically appraised
 - **n=12**

Excluded based on key word searches
- Not related to the topic-specific questions
 - **n=3,002**

Excluded after review of full text
- Not related to pressure injuries
- Not related to the clinical questions
- Citation type/research design not meeting inclusion criteria
- Non-English citation with abstract indicating not unique research for translation
 - **n=71**

Total references providing direct or indirect evidence related to topic
- **n=44**

Wound Care: Data Extraction and Appraisals

Articles Reviewed for International Pressure Injury Guideline

The research has been reviewed across three editions of the guideline. The terms pressure ulcer and pressure injury are used interchangeably in this document and abbreviated to PU/PI. Tables have not been professionally edited. Tables include papers with relevant direct and indirect evidence that were considered for inclusion in the guideline. The tables are provided as a background resource and are not for reproduction.

<table>
<thead>
<tr>
<th>Ref</th>
<th>Type of Study</th>
<th>Sample</th>
<th>Intervention(s)</th>
<th>Outcome Measures & Length of Follow-up</th>
<th>Results</th>
<th>Limitations and comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wound cleansing</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hiebert & Robson, 2016</td>
<td>RCT comparing HCOl to saline for use with ultrasonic debridement healing pressure injuries</td>
<td>Participants were recruited by unknown means (n=17, n=12 with PUs) No inclusion/exclusions criteria No patient characteristics</td>
<td>Randomly assigned by unknown methods to: HCOl or saline All received ultrasonic debridement plus silver dressings for 7 days</td>
<td>wound complications</td>
<td>Fewer wound complications were observed in the HCOl group (35% versus 80%).</td>
<td>Very small study No statistical analysis Methods of randomization and allocation concealment not reported No blinding</td>
</tr>
<tr>
<td>Luan, Li, & Lou, 2016</td>
<td>RCT comparing humanized nursing and wet therapy to regular treatment for healing pressure injuries</td>
<td>Individuals were recruited in one hospital in China (n=50) Inclusion criteria: Category/Stage II and III pressure injuries Participant characteristics: Average age 63±2.5 years 29/50 were Category/Stage III, 21/50 Category/Stage II Primarily sacroiliac</td>
<td>Randomly assigned by unknown methods to: • Intervention: Treatment with humanized nursing in combination with wet healing therapy that involved cleansing with saline (n=25) • Control: disinfection with 0.5% iodophor, air exposure until scabbing. If blistering present, liquid extracted and sterile gauze applied (n=25) • 28 day study</td>
<td>Criteria for outcome: o Healing: epithelium regenerated and PUSH score 0 o Effectiveness: When skin appearance was not abnormal, total score of PUSH decreased o Ineffectiveness: When no amelioration in the wound’s condition and PUSH remained the same o Deterioration: when surrounding skin festered, color deepened, any secondary infection occurred and total PUSH score increased</td>
<td>The experimental group noted improvement rate that was deemed statistically significant: o Overall: 92% experimental group vs 60% control group, p<0.001 o Category/Stage III pressure injuries improvement rate 92.31% versus 71.43%, p=0.001 o Category/Stage III pressure injuries improvement rate 91.67% versus 45.45%, p<0.001</td>
<td>Refers to “Branden scoring” throughout “Humanized nursing” not defined Wet healing therapy not defined Debridement therapy differed between groups Cleansing solutions differed between groups Offloading interventions only for experimental group Questionable ethical approach Lacking objective assessment parameters</td>
</tr>
</tbody>
</table>
Wound Care: Data Extraction and Appraisals

<table>
<thead>
<tr>
<th>Ref</th>
<th>Type of Study</th>
<th>Sample</th>
<th>Intervention(s)</th>
<th>Outcome Measures & Length of Follow-up</th>
<th>Results</th>
<th>Limitations and comments</th>
</tr>
</thead>
</table>
| A. Bellingeri et al., 2016 | RCT exploring the efficacy of a propylbetaine-polihexanide solution for wound cleansing | Participants were recruited in six clinical centers in Italy (n=289)
Inclusion criteria:
- Aged ≥ 18 years
- PU Category II or III or a vascular wound
- Braden score ≥ 10
- Wound area <80cm²
Exclusion criteria:
- Terminally ill
- Antibiotic/antiseptic within 10 days
- Braden score < 10
- Corticosteroids, immunosuppressants, radiotherapy
- Difficult to reposition
- Unable to use pressure redistribution mattress
- DFU
- Necrotic dry eschar
Participant characteristics:
- Mean age 77-79 years
- Approximately 35% PU, 50% VLU, 18% mixed etiology | All wounds irrigated with syringe with 20-30mls and needle 19-20G
- Application of wound irrigation pack for at least 10 minutes
- Participants were randomized to receive pack of:
 - propylbetaine 0.1% and polihexanide 0.1% (PP) (n=143 randomized and analyzed, n=141 completed), or
 - normal saline (n=146 randomized and analyzed, n=139 completed) | Wounds assessed at every dressing change
- Assessment formally at baseline, day 1, day 14, day 21 and day 28 using Bates-Jensen Wound Assessment Tool (BWAT) (lowest score = healthier)
- Wound inflammation assessment was based on five BWAT items (exudate type, exudate amount, surrounding skin color, peripheral tissue edema, peripheral tissue induration).
- Pain assessment on a 11-point VAS | Wound improvement on BWAT
- For overall BWAT score, the PP group showed significantly better improvement than the normal saline group at day 28 (p=0.028)
- For wound inflammation assessment, the PP group showed significantly better improvement than the normal saline group at day 28 (p=0.03)
- There was no significant between group differences in pain scores
- Pain | • Small attrition with no difference between groups and reason was loss to follow up or death unrelated to treatment
• Approximately 25% of wounds were PUs
• Does not report randomization or allocation methods | Indirect evidence: (wounds primarily of different origin, only 25% pressure injuries, results not reported by etiology)
Quality: Moderate |
| Ho, Bensitel, Wang, & Bogie, 2012 | Double blind prospective RCT investigating pulsatile lavage for PU cleansing | Participants recruited from an inpatient facility (n=28)
Inclusion:
- aged > 18 yrs with SCI
- stage III and IV pelvic PUs, presenting as clean with no odor,
All participants received standard care according to clinical guidelines. Participants were randomised to receive either:
- Length, width and depth of PU obtained weekly for 3 weeks
- PU depth using saline injection method
- PU healing rate over the 3-week study period
Wound healing
- Both linear and volume measurements showed improvements over time for both groups
- Time trend analysis revealed greater improvements for | Wound healing
- Both linear and volume measurements showed improvements over time for both groups
- Time trend analysis revealed greater improvements for | Level of Evidence: 1
Quality: moderate |
Wound Care: Data Extraction and Appraisals

<table>
<thead>
<tr>
<th>Ref</th>
<th>Type of Study</th>
<th>Sample</th>
<th>Intervention(s)</th>
<th>Outcome Measures & Length of Follow-up</th>
<th>Results</th>
<th>Limitations and comments</th>
</tr>
</thead>
</table>
| R. Bellingeri et al., 2004 | RCT exploring saline solution cleansing vs cleansing with a aloe vera/silver spray for healing pressure injuries | Participants were older adults (n=82) Inclusion criteria:
• Pressure injury Category/Stage I or greater within 10 cm x 10 cm,
• Admitted > 24 hours.
Participant characteristics: age range 56 to 84 years | • Randomized to receive:
 o Intervention: cleansing with a saline spray with Aloe Vera, silver chloride and decylglucoside (Vulnopur®). (n=36)
 o Control: cleansing with isotonic saline solution (n=46)
• 14 day study | • Pressure Sore Status Tool (PSST)
Change in PSST at day 14
Intervention group has significantly greater reduction in PSST than isotonic saline control group (-22.7±31.3 versus -11.7±24.1, p=0.02) | • Methods of randomization and allocation concealment not reported
• Unclear if blinded
• No ITT analysis
• Short follow up
• Mechanisms of product not explained | Level of Evidence: 1
Quality: low |
| Konya, Sanada, Sugama, Historical control quasi-experiment comparing | Participants were older adults recruited in a long term care hospital (n=189) | • Participants received either:
 o Rate of ulcer healing and the time it took to heal
 o Healing time shorter with a pH-balanced skin cleanser and water | | • Anatomical location of pressure injuries was not reported | Level of Evidence: 2 |
Wound Care: Data Extraction and Appraisals

<table>
<thead>
<tr>
<th>Ref</th>
<th>Type of Study</th>
<th>Sample</th>
<th>Intervention(s)</th>
<th>Outcome Measures & Length of Follow-up</th>
<th>Results</th>
<th>Limitations and comments</th>
<th>Quality</th>
</tr>
</thead>
</table>
| Okuwa, & Kitagawa, 2005 | cleansing of the peri-wound skin with saline versus skin cleanser | Inclusion criteria: At least 65 years of age pressure injuries Category/Stage II or greater
Characteristics: Primarily Category/Stage II pressure injuries | o cleansing of the peri-wound skin with normal saline (n = 95)
o cleansing with a pH-balanced skin cleanser (n = 90). | • Not reported how this was measured | • Decreased healing time only statistically significant for Category/Stage II pressure injuries (median healing 15 days versus 20 days, p=0.002), amounting to 1.79-fold faster healing | Quality: low |
| Chizuko Konya et al., 2005 | Observation study of microbial numbers on peri wound skin | Participants were recruited in a long term care facility (n=17) characteristics: 7 trochanter, 3 ischial and 7 sacral. | • Collected skin debris with a cotton ball
• Periwound cleansing with normal saline in 5 participants with samples collected immediately after cleansing, 6 hours after cleansing and 24 hours after cleansing
• Three participants had the same procedure above but with povidone iodine skin cleanse | • Analysis of squalene and cholesterol, proteins | • Significant decrease (p<0.05) in periwound microbial counts immediately after cleansing, but returned to baseline by 24 hours | Minimal patient details
Location of pressure injury may influence findings (e.g. high contamination of sacral regions)
Legitimacy of microbial analysis is unclear
17 recruited, only 5 used in the analysis | Level of Evidence: 4
Quality: low |

Topical agents for promoting wound healing

Topical sildenafil (increases blood flow)

| Farsaei, Khalili, Farboud, & Khazaeipour, 2015 | Non-blinded RCT investigating the effect of topical sildenafil in healing PUs | Participants screened from an ICU department in Iran (n=122 met inclusion criteria)
Inclusion criteria:
• Aged 18 years or over and consenting
• PU grade I or II on two-digit Stirling scale (equivalent to Category/Stage I and II) | • All participants received standard care as appropriate including preparation of wound bed, pressure reduction, medical comorbidity management and nutritional support. | Daily wound inspection for 2 weeks
Visual inspection
Digital photography
Outcome measures: change in two-digit Stirling scale score
change in wound surface area (WSA) | Completion of trial/withdrawals
• Withdrawals excluded from analysis: 8 from treatment group, 9 from control group (death, exacerbation of wounds requiring debridement, transfer) | Randomization and concealment methods not reported
No ITT analysis
Unclear how wound measurement made or by whom (no interrater reliability reported)
Outcome measure assumes | Level of evidence: 1
Quality: Low |
Wound Care: Data Extraction and Appraisals

<table>
<thead>
<tr>
<th>Ref</th>
<th>Type of Study</th>
<th>Sample</th>
<th>Intervention(s)</th>
<th>Outcome Measures & Length of Follow-up</th>
<th>Results</th>
<th>Limitations and comments</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Only one PU with highest score included per participant</td>
<td>Participants were randomized to receive: o Daily application sildenafil 10% ointment (n=60, 52 completed) o Daily application placebo ointment (n=62, 53 completed)</td>
<td>No significant difference between groups in excluded subjects (p=0.12)</td>
<td>Category/Stage regression, Participants with worsening wound condition were excluded from analysis, Wound severity was not equivalent at baseline, Silendafil is an oil-based, water resistant ointment.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Exclusion: o PU stage III or IV o Any sign of clinical infection (e.g. erythema, purulent exudate, increased pain or friability, bright red granulation tissue, wound surface breakdown, foul odor) o Hypersensitive to product (nb. Product contained beeswax)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Characteristics: o Mean age 62 years o No significant difference in comorbidities including CV disease, diabetes, malignancy o No sig difference in wound locations o Silendafil group had significantly lower mean Stirling score at baseline (1.5 vs 1.74, p=0.001)</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Topical atorvastatin (statin)

Farsaei, Khalili, Farboud, Karimzadeh, & Beigmohammadi, 2014

To evaluate the effects of **topical atorvastatin on the healing process of pressure ulcers in critically ill patients**

Participants recruited in an ICU of a university-affiliated teaching hospital in Tehran, Iran (n=104)

Inclusion criteria:
- Category/stage I or II pressure injuries (Stirling Pressure Sore Severity Scale)

- Patients were randomized to receive:
 - topical atorvastatin 1% ointment (atorvastatin group) (n=51) or placebo ointment (n=53)

- The efficacy of each treatment was assessed on days 7 and 14.
- Efficacy was determined based on the degree of healing of the existing pressure injury by using the 2-digit Stirling scale

The mean +/−SD stage of pressure ulcers significantly decreased in the atorvastatin group compared with the control group on day 7 (0.97±0.76 vs 1.74±0.75, p<0.01) and day 14 (0.42 ±0.67 vs 1.71±0.78, p<0.01) of treatment

Adverse events associated with treatment
- None reported
- N.b. beeswax is used in product preparation.

Level of evidence: 1

Quality: High
Data Tables: 2019 Guideline Update: Woundcare

<table>
<thead>
<tr>
<th>Ref</th>
<th>Type of Study</th>
<th>Sample</th>
<th>Intervention(s)</th>
<th>Outcome Measures & Length of Follow-up</th>
<th>Results</th>
<th>Limitations and comments</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Wound surface area</td>
<td>In addition, the mean±SD surface areas of ulcers in the atorvastatin group were significantly declined compared with the control group after 7 days (5.55±4.55 vs 9.41±5.03 cm², p<0.01) and 14 days (3.72±4.45 vs 10.41±6.41 cm², p<0.01) of treatment.</td>
<td></td>
</tr>
</tbody>
</table>

Topical insulin

Stephen, Agnihotri, & Kaur, 2016
Non blinded RCT investigating effect of topical application of insulin versus normal saline in healing PU
Participants recruited from neurosurgical ICU and neurology wards at a trauma center in India (n=70)
Inclusion criteria: Category/Stage II or III pressure injuries
Exclusion criteria:
- Immunodeficiency
- Diabetes
- Pregnancy
- Osteomyelitis
- Peripheral vascular disease
Characteristics:
- Mean age control 41.46 years
- Mean age intervention 43.36 years
- No sig diff in LOS, wound duration, frequency of position change, baseline wound area, Pressure Ulcer Scale for Healing Length and width calculated using (PUSH) score.
Participants randomized to:
- Control group: Application of sterile saline soaked gauze (normal saline 0.9%) twice daily. (n=35)
- Intervention: Application of Actrapid (human insulin) sprayed using insulin syringe allowed to dry for 15 minutes then covered with sterile gauze. Applied twice daily. (n=35)
- Change in ulcer size at day 4 and day 7
- Change in PUSH score at day 4 and day 7
- Ulcer size calculated using transparent sterile paper over wound to mark borders. Two largest perpendicular diameters were measured in cm using ruler. These two measurements were multiplied to obtain total cm²
Change in ulcer size day 4: Sig diff in ulcer size at day 4 with intervention group demonstrating greatest reduction (p=0.043)
Change in ulcer size at day 7: Sig diff in ulcer size at day 7 with intervention demonstrating greatest reduction (p=0.013)
Change in PUSH scores at day 4 was significant with intervention showing greater decrease (p=0.141)
Change in PUSH scores at day 7 was significant with intervention showing greater decrease (p=0.003)
No adverse events reported
- Not blinded
- No adjunct wound care described
- Small sample size
- Short follow up period
- Ulcer location not described
- Method for wound measurement has questionable reliability
- Wound depth not part of measurement
- Withdrawals excluded from analysis: 5 from intervention and 5 from control

Level of Evidence: 1
Quality: Low
Topical nitric oxide cream

Saidkhani, Asadizaker, Khodayar, & Latifi, 2016

Controlled trial exploring the effect of topical nitric oxide cream for healing PUs

Participants were recruited in ICUs in university hospitals in Iran (n=58 enrolled)

Inclusion criteria:
- Aged ≥ 18 years
- Category/Stage II PU or greater
- Non-smokers

Exclusion criteria:
- Cancer, vascular disease, lupus, rheumatoid arthritis or renal failure
- Drug use that increases levels of nitric oxide

Participant characteristics: (not significantly different between groups)
- Mean age 55 years
- Mean BMI 32kg/m²
- Primarily sacral ulcers
- Primarily Category/Stage II PU
- Most patients had complete immobility
- Participants were receiving feeding tube or TPN

Intervention(s):
- Participants received repositioning, ulcer cleansing and Comfeel dressing
- Participants received either:
 - nitric oxide cream (sodium nitrite 6% cream followed by p citric acid 9% mixed in the wound bed) (n=29)
 - placebo cream (n=29)

Length of follow-up:
- 30 mins after cream application the PU was re-irrigated and new dressing applied
- Dressings changed second daily for 3 weeks

Outcome Measures & Length of Follow-up:
- PUSH tool used to measure ulcer size (ruler; scored on a 0 to 10 scale) and tissue type (scored on 0 to 4 scale with 0 being healed and 4 being necrotic)

Results:
- **Change in ulcer size**
 - Nitric oxide group: not significant in week 1 but significant improvement from week 2 (p=0.008) and week 3 (p=0.000). Baseline size mean score 9.64 ± 2.49 to week 3 mean size score 8.83 ± 2.64.
 - Control group not significant in week 1 or 2 but was significant in week 3 (p=0.01). Baseline size mean score 9.56± 2.59 to week 3 mean size score 9.20± 2.62.
 - No significant difference between groups.

- **Change in exudate volume**
 - Nitric oxide group had significant decrease in exudate volume in second (p=0.01) and third weeks (p=0.005)
 - Control group had significant decrease in exudate in week 3 (p=0.02)

- **Change in tissue type**
 - Nitric oxide group had significant improvement in third week (p=0.01)
 - Control group had significant improvement in third week (p=0.04)

Author conclusion: Nitric oxide can be used as a complementary topical.
Wound Care: Data Extraction and Appraisals

<table>
<thead>
<tr>
<th>Ref</th>
<th>Type of Study</th>
<th>Sample</th>
<th>Intervention(s)</th>
<th>Outcome Measures & Length of Follow-up</th>
<th>Results</th>
<th>Limitations and comments</th>
</tr>
</thead>
</table>
| **Topical phenytoin** | RCT to demonstrate the validity of phenytoin as a topical treatment | Participants were recruited in unknown method (n=19) | Participants received either:
- Sodium phenytoin powder dissolved in saline and applied with gauze to pressure injury, with gauze remaining on pressure injury for 3 hours and replaced every 3 hours (n=11), or
- Comparator: gauze soaked in saline only applied to pressure injury (n=8) | • Healing (not defined and measurement method not reported) | Pressure injuries treated with phenytoin powder healed significantly faster (19.36±3 days versus 28.75±2.43 days, p<0.001) | • Method of randomization and allocation concealment not reported
• Very small sample size
• Comparability of groups was not established (e.g. pressure injuries might have been different severity)
• Comparability of treatment beside wound care not reported
• Unknown if any withdrawals or if ITT analysis | Level of Evidence: 1
Quality: low |

Tickle, 2015
Case series exploring efficacy of hemoglobin spray for healing PUs
Participants were recruited at multiple centers in UK by unknown methods (n=19 commenced, n=18 completed)
Inclusion criteria:
- Aged ≥ 18 years
- PU grade 2,3 or 4
Exclusion criteria:
- PU category/stage 1
- Pregnant or lactating
- Unable to tolerate topical agent
Participants were treated with hemoglobin spray
Standard wound dressing regimens were used including foams, hydrofibers, and hydrgels
Pressure redistribution and offloading
PU grading tool by EPUAP
Wound size and depth
Wound bed characteristics (percent of slough, granulation tissue and/or epithelial tissue)
Exudate (none, mild, mod or severe)
Pain on a 11 point scale from 0 to 10 | Healing
- 17/18 PUs showed reduction in size after 4 weeks
- Average PU depth decreased from 0.97cm to 0.37cm
- 100% PUs showed reduction in slough
- Average granulation tissue increased | Author conclusions: Topical hemoglobin spray can promote healing in PUs | Level of evidence: 4
Quality: Low |
Wound Care: Data Extraction and Appraisals

Topical hyaluronate cream

<table>
<thead>
<tr>
<th>Ref</th>
<th>Type of Study</th>
<th>Sample</th>
<th>Intervention(s)</th>
<th>Outcome Measures & Length of Follow-up</th>
<th>Results</th>
<th>Limitations and comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Felzani et al., 2011</td>
<td>Double-blind RCT comparing lysine hyaluronate cream to sodium hyaluronate cream for managing PUs</td>
<td>Participants recruited from a hospital in Italy (n=50)</td>
<td>• All PUs were initially cleaned with saline and debrided as required.</td>
<td>• Wound size</td>
<td>• PU reduction was greater and faster in the Lys-HA groups than SH groups.</td>
<td>• Small study and overall results are not reported (only stratified by PU severity) therefore unclear if adequately powered</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• Participants were stratified by PU stage. Randomized to receive either:</td>
<td>• Time to reach 50% reduction in wound size</td>
<td>Stage I PU results (n=20, 10 each group)</td>
<td>• Lack of inclusion of patients with stage IV PU</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>o lysine hyaluronate cream (Lys-HA, n=25)</td>
<td>• Photographs and planometry were taken before the treatment and then every 3 days and at the end of the study</td>
<td>Stage II PUs (n=20, 10 each group)</td>
<td>• Wound size and condition and co-morbidity at commencement not reported</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>o sodium hyaluronate (SH, n=25)</td>
<td>• PU reduction was greater and faster in Lys-HA group (90% versus 70%, p< 0.05)</td>
<td>Stage III PU (n=10 participants with 14 PUs, 7 PUs in each group)</td>
<td>• No reporting of effect overall (i.e. not by stratified groups)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• For all PUs, the topical hyaluronate was applied as a thin layer across the ulcer surface and overed with fat gauze then sterile gauze.</td>
<td>• Time to reach 50% reduction in wound size was faster in Lys-HA group (9.5 versus 15 days, p<0.05)</td>
<td>• Time to reach 50% reduction in wound size was faster in Lys-HA group (12.9 versus 19.2 days, p<0.05)</td>
<td>• Participants who dropped out (approx. 18%) not included in analysis</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• Dressing changes were daily during the first week and every other day the second week.</td>
<td>• Study conclusions: This small, underpowered study without a placebo control found lysine hyaluronate cream was</td>
<td>• Duration of active treatment of 15 days</td>
<td>• Wound size not reported</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• Duration of active treatment of 15 days</td>
<td></td>
<td>Stage II PU (n=10 participants with 14 PUs, 7 PUs in each group)</td>
<td>• No placebo control</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• Clinical signs of infection</td>
<td></td>
<td>Stage III PU (n=10 participants with 14 PUs, 7 PUs in each group)</td>
<td>• No definition of standard care and how this relates to intervention tested.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Participant characteristics:</td>
<td></td>
<td>Stage III PU (n=10 participants with 14 PUs, 7 PUs in each group)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• Mean age 65 years (range 34 to 91)</td>
<td></td>
<td>Stage III PU (n=10 participants with 14 PUs, 7 PUs in each group)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• 9 sacral PUs, 7 heel PU and elbow and hip PU)</td>
<td></td>
<td>Stage III PU (n=10 participants with 14 PUs, 7 PUs in each group)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• Average wound duration was 11 weeks</td>
<td></td>
<td>Stage III PU (n=10 participants with 14 PUs, 7 PUs in each group)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• Mean size 11.23cm² (range 0.25cm² to 52cm²)</td>
<td></td>
<td>Stage III PU (n=10 participants with 14 PUs, 7 PUs in each group)</td>
<td></td>
</tr>
</tbody>
</table>

Level of evidence: 1
Quality: low
Wound Care: Data Extraction and Appraisals

<table>
<thead>
<tr>
<th>Ref</th>
<th>Type of Study</th>
<th>Sample</th>
<th>Intervention(s)</th>
<th>Outcome Measures & Length of Follow-up</th>
<th>Results</th>
<th>Limitations and comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Niu, Han, & Gong, 2016</td>
<td>Non blinded RCT investigating effect of topical application of Ligustrazine (a plant extract) on pressure injuries</td>
<td>Participants were recruited in hospital in China (n=32)</td>
<td>• intervention (n=16): Ligustrazine transdermal patch applied weekly to the wound bed for 4 weeks. Ligustrazine (an alkaloid extracted from the plant Ligusticum chuanxiong Hort) is a Chinese medicinal herb thought to have antioxidant, neuron-protection, antifibrosis, antinociception, vasorelaxation, anti-inflammation, and anti-proliferation properties.</td>
<td>Therapeutic effect on PUs assessed using a traditional Chinese Medicine scale. Scale applied after 4 weeks of continuous treatment. By whom pressure injuries/other outcomes were measured – not stated.</td>
<td>Wound condition Therapeutic effect on PU Intervention group: 11 healing, 9 markedly effective, 2 effective, 4 ineffective versus control Group outcomes: 8 healing cases, 8 markedly effective, 2 effective, 4 ineffective No OR or CI reported, p<0.05</td>
<td>• In Vitro aspects of studied not included here Unblinded • Randomization method not stated. • Insufficient info on participant selection • Insufficient information on baseline wound characteristics • Unvalidated scale used to determine therapeutic effect • Unclear how ‘time to healing’ was calculated</td>
</tr>
<tr>
<td>Buzzi, Freitas, & Winter, 2016</td>
<td>Observational study evaluating the therapeutic benefits of Plenusdermax® (Phytoplenus Bioativos S.A., Pinhais, PR, Brazil) topical spray applied to participants assessed and followed up in dermatology outpatient clinic in hospital in Brazil (n=41)</td>
<td>• Wound area calculated from photographs using planimetry</td>
<td>Wound Area All small wounds completely healed at 30 weeks and 58% of larger wounds. (No significant</td>
<td>Uneven group sizes during trial and in subsequent analysis. Level of evidence: 4 Quality: low</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Wound Care: Data Extraction and Appraisals

<table>
<thead>
<tr>
<th>Ref</th>
<th>Type of Study</th>
<th>Sample</th>
<th>Intervention(s)</th>
<th>Outcome Measures & Length of Follow-up</th>
<th>Results</th>
<th>Limitations and comments</th>
<th>Quality</th>
</tr>
</thead>
</table>
| Plenusdermax®, Calendula extract on the healing of pressure injuries | Inclusion criteria:
- Aged 18 – 90
- No allergy to any products used.
- Category/Stage II or III pressure injury, present for at least 5 weeks between 1-30 cm² in sacral or trochanteric region.
- Non-diabetic.

Exclusion criteria:
- Category/Stage IV pressure injuries
- Necrotic tissue unable to be debrided by nursing staff.
- Infected pressure injuries
- Significant co-morbidities impairing healing (renal / liver failure, anemia, malnutrition, immunocompromised).
- Pregnancy, childbearing age not using contraception
- Corticosteroids, Immunosuppressants, radiotherapy, chemotherapy | Target pressure injury twice a day after wound cleaning with sterile saline, by participants / caregivers. Product allowed to dry for 5 minutes and wound occluded with sterile gauze. (Calendula officinalis flower extracts claimed to have antiinflammatory properties)
- Degree of wound contraction per week (mm²/week).
- Wound healing rate per week (WHR%).
- Total follow up – 30 weeks
- Sample split into two groups for analysis and presentation of results. Small pressure ulcers (1.0 – 3.9 cm²) and large ulcers (4.0 – 11.0 cm²). | Difference between small and large wounds p = 0.857
- Wound contraction rate
- Wound contraction rate was 52% higher in large wounds (No significant difference between small and large wounds (p = 0.465).
- Wound healing rate
- Smaller wounds healed twice as fast as large wounds (p = 0.027). | Potential variability in product application by patients / carers during trial period. | Low |
| Liu, Meng, Song, & Zhao, 2013 | RCT exploring a novel Chinese herbal formula, cure rot and flat sore ointment (CRFSO) in the management of Category/Stage IV pressure injuries | Participants were recruited in inpatient rehabilitation in China from January 2004 to September 2010 (n=35)
- Inclusion criteria:
 - Paraplegic patients
 - Category/Stage IV pressure injuries that underwent reconstruction

Participant characteristics:
- Arnebia root oil (ARO) plus gentamicin wet gauze (16 patients with 11 PIs)
- used (cure rot and flat sore ointment) CRFSO that contains gypsum fibrosum and three herbal | Participants were randomized to receive either:
- Arnebia root oil (ARO) plus gentamicin wet gauze (16 patients with 11 PIs)
- used (cure rot and flat sore ointment) CRFSO that contains gypsum fibrosum and three herbal | All outcome variables demonstrated significant improvement in the CRFSO group compared with the ARO group after 28 days of treatment, with a higher healing rate (85% in the CRFSO group and 45.45% in the ARO group) and lower no response rate (5% in the CRFSO group and 18.18% in the ARO group). | Limited by sample size, the results 17% withdrawal rate due to poor efficacy (all in ARO group)
Selection of participants and assignment to groups is very unclear
Subjective outcome evaluation | Level of Evidence: 3
Quality: low |
Wound Care: Data Extraction and Appraisals

<table>
<thead>
<tr>
<th>Ref</th>
<th>Type of Study</th>
<th>Sample</th>
<th>Intervention(s)</th>
<th>Outcome Measures & Length of Follow-up</th>
<th>Results</th>
<th>Limitations and comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Li, Ma, Yang, Pan, & Meng, 2017</td>
<td>To evaluate the efficacy and safety of moist exposed burn ointment (MEBO) in the treatment of pressure ulcers in Chinese patients.</td>
<td>Participants were recruited in a hospital in China (n=72)</td>
<td>No difference at baseline in pressure injury area</td>
<td>Unclear who evaluated wounds
Measurement at baseline, at one month, then at two months
Method for determining wound surface area not stated.
Staging system used EPUAP/NPUAP
Participants were in the study for two months, no follow up after this time frame.
States adverse events where recorded,</td>
<td>No ointment related adverse events</td>
<td>Any limitations: no long term follow up. Individual’s medications differed.
No indication of where funding came from.
No indication of who created MEBO and its link to the organizations involved.
No mention of the issue of conflict of interest</td>
</tr>
</tbody>
</table>
Wound Care: Data Extraction and Appraisals

<table>
<thead>
<tr>
<th>Ref</th>
<th>Type of Study</th>
<th>Sample</th>
<th>Intervention(s)</th>
<th>Outcome Measures & Length of Follow-up</th>
<th>Results</th>
<th>Limitations and comments</th>
</tr>
</thead>
</table>
| Zerón, Gómez, & Muñoz, 2007 | RCT comparing collagen – polyvinylpyrrolidone (clg-pvp) application to saline solution for | Participants were recruited in one center in Mexico (n=24)
Inclusion
Aged > 65 years
Category /stage II or II pressure injury
Exclusion:
Prior surgery
Septic, ventilated, coma
Taking steroids
Characteristics
Mean age 75-79 years | Participants were randomized to receive:
local cleaning with soap, application of zinc oxide paste and clg-pvp (n=12), or
local cleaning with soap, application of zinc oxide paste and placebo (n=12)
Clg-pvp or placebo was applied to each pressure injury intradermically (1.5 ml at 4 equi-spaced points around the ulcer) | • Reduction in fibrous tissue
• Reduction in pressure injury size
• 3 weeks follow up | 2.3 to -1.0, mean difference -1.4 (95% CI -1.9 to -0.9, p<0.1)
• Month two: intervention - 4.5 (95% CI -5.1 to -3.9) versus control -2.6 (95% CI 3.3,-2.1); mean difference - 2.9 (95% CI -4.4 to -1.7, p <0.1) | • Adverse events
• no major adverse effects reported, does not mention adverse effects of a lesser nature.
• Author conclusion: MEBO is a safe and effective for treating pressure ulcer |
| Sipponen et al., 2008 | Prospective, multicentre RCT investigating | Participants recruited from 11 primary care hospitals in Finland
Details of concurrent management strategies were limited. | • Primary outcome measure was complete
• The resin salve group achieved a higher rate of complete healing at 6 | | |
<table>
<thead>
<tr>
<th>Ref</th>
<th>Type of Study</th>
<th>Sample</th>
<th>Intervention(s)</th>
<th>Outcome Measures & Length of Follow-up</th>
<th>Results</th>
<th>Limitations and comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>effectiveness of resin salves (Picea abies) in PU care</td>
<td>between 2005 and 2007 (n=37, n=22 completed and analysed)</td>
<td>Approximately 22% of control group and 8% of treatment group were managed on a pressure mattress. Participants were randomly assigned to either: resin salve applied at 1mm thickness between gauze layers with dressing changed third daily or daily for heavily exuding PUs (n=13 with 18 PUs) sodium carboxymethylcellulose hydrocolloid polymer dressing (Aquacel®) or for clinically infected PUs, hydrocolloid dressing with ionic silver (Aquacel Ag®). Dressing changed third daily, or daily for heavily exuding PU. (n=9 with 11 PUs) Some participants in both groups received concurrent antibiotics</td>
<td>healing of the ulcer within 6 months Secondary outcome measures included eradication of bacterial strains cultured from ulcers at the study entry Bacterial cultures were obtained from all PUs at baseline and 1 month, but thereafter only as clinically indicated. PU size measured by digital photography and planimetry</td>
<td>Results (92% versus 44%, p=0.003) The speed of PU healing was significantly faster in the resin than in the control group (p=0.013) Bacterial cultures from the PU area more often became negative within 1 month in the resin group 100% of PUs in treatment group were rated fully healed or significantly improved versus 91% in the control group (p=0.003) Drop outs in intervention included participants who required surgical intervention (n=2) and allergic reaction to the product (n=1). Drop outs were not significantly different between groups.</td>
<td>Over 40% drop out of study. Although there was no significant difference in baseline characteristics between drop outs in each group, more treatment participants dropped out due to deteriorating PUs and had these cases been included in analysis there may not have been statistically significant effect. Study failed to recruit and maintain sufficient numbers to reach a-priori sample size calculations. Bacterial eradication analysis is complicated by the concurrent use of antibiotics for some participants</td>
<td></td>
</tr>
</tbody>
</table>

Model of care

| Furuta, Mizokami, Sasaki, & Cohort study comparing outcomes for Consecutive patients receiving care for PU in Japan over a 4 year period (n=888 identified, n=868 recruited) | “Furuta method” is poorly reported but appears to be a Patients were analyzed according to DESIGN-R severity of PU | Duration of healing For each DESIGN-R category of patients, compliance group had In most DESIGN-R groups, the baseline scores were | Level of evidence: 3 |

Data Tables: 2019 Guideline Update: Woundcare © EPUAP/NPIAP/PPPIA Page 15
Evidence Tables

Yasuhara, 2015

<table>
<thead>
<tr>
<th>Ref</th>
<th>Type of Study</th>
<th>Sample</th>
<th>Intervention(s)</th>
<th>Outcome Measures & Length of Follow-up</th>
<th>Results</th>
<th>Limitations and comments</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>patients who are treated by pharmacists who use versus do not use Furuta method</td>
<td>Inclusion criteria: Assessed using DESIGN-R as being ≥D2 (equivalent to Category 2)</td>
<td>Guideline for pharmacists on managing pressure injuries with topical agents. Components of the “Futura method” include Accurate assessment of the wound bed Potential use of wound fixation by traction as appropriate Selection of specific topical treatment (e.g. cadexomar iodine, povidone iodine etc) based on clinical characteristics of the PU</td>
<td>Analysis compared compliance versus non-compliance where compliance was defined as the pharmacist using the “Futura method” to select topical treatment Compliance was assessed using a pharmacist survey Follow-up periods varied from 23 days to 70 days depending upon wound severity but were not significantly different between compliance versus non-compliance cohorts</td>
<td>Faster healing than non-compliance group D2 23.6 ± 36.8 days vs. 32.2 ± 16.6 days, p<0.001 D3: 46.8 ± 245.5 days vs. 137.3 ± 52.7 days, p<0.001 D4, 5: 122.5 ± 225.7 days vs. 258.2 ± 92.7 days, p<0.001 DU: 78.1 ± 298.9 days vs. 142.5 ± 79.4 days, p<0.001</td>
<td>Significantly different suggesting different PU severities/characteristics between compliant versus non-compliant groups “Futura” method had a very broad range of treatments, many of which may also have been selected for the non-compliant group using different assessment strategies It is hard to determine if assessment or any specific topical treatment was associated with greater healing</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Exclusion criteria: Missing demographic information Characteristics:</td>
<td>Mean age 80±11.3 years At baseline there was some significant difference between the compliance and non-compliance groups in each analysis, primarily the DESIGN-R score had significant differences for those with D2, D4,5 and DU components of the “Futura method” include Accurate assessment of the wound bed Potential use of wound fixation by traction as appropriate Selection of specific topical treatment (e.g. cadexomar iodine, povidone iodine etc) based on clinical characteristics of the PU</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Wilcox, Carter, & Covington, 2013

<table>
<thead>
<tr>
<th>Ref</th>
<th>Type of Study</th>
<th>Sample</th>
<th>Intervention(s)</th>
<th>Outcome Measures & Length of Follow-up</th>
<th>Results</th>
<th>Limitations and comments</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Retrospective cohort study Investigating association between healing and debridement frequency</td>
<td>Data base study using data from 525 wound clinic in US (n=364,534 wounds, 312,744 analyzed)</td>
<td>N/A</td>
<td>Healing</td>
<td>Rate of complete healing</td>
<td>Concurrent treatments differed Confounding heal factors not addressed directly Does not report type of debridement performed</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Inclusion:</td>
<td></td>
<td></td>
<td>Overall 70.8% of wounds completely healed 56.6%, lowest rate of all wound types in the database</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Aged < 18 years</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>received at least one debridement for a wound</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>discharged from the system</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Exclusion criteria: Any advanced therapeutic treatment above what was considered standard care</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Debridement</td>
<td>Median number debridements was 2 (range 1 to 138) A significantly higher proportion of wounds that received weekly or more frequent debridement</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Debridement

Author conclusions: using the “Futura method” of assessing the PU and selecting a topical agent based on PU characteristics is associated with faster PU healing
Wound Care: Data Extraction and Appraisals

<table>
<thead>
<tr>
<th>Ref</th>
<th>Type of Study</th>
<th>Sample</th>
<th>Intervention(s)</th>
<th>Outcome Measures & Length of Follow-up</th>
<th>Results</th>
<th>Limitations and comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Shannon, 2013</td>
<td>Retrospective record review exploring outcomes of heel pressure injuries with an without debridement</td>
<td>Records in 15 nursing homes in the US were reviewed to identify patients who had heel PU (n=179) Inclusion: heel wound entirely covered with eschar or a blister Exclusion: Heel not totally covered with eschar or blister Heel PUs were defined as: having entire eschar coverage (67.8% of sample) having blister coverage (31.8% of sample)</td>
<td>Heel eschar managed with standard procedure to leave the eschar intact, but if eschar loosened it was removed with sharp debridement Heel blisters kept dry, intact, and offloaded unless ruptured and then managed according to wound policy.</td>
<td>155 PUs were followed to completion</td>
<td>Heel pressure injury outcomes • 154 of the wounds (99.3%) healed • 100% of eschar wounds healed with an average healing time of 11 weeks (range 2 to 50 weeks) • Complications included one patient who developed osteomyelitis (with eventual healing) and two cases of cellulitis and one eventual amputation in a patient with blister coverage of the ulcer</td>
<td>• Unclear how assessments were performed • Patient characteristics not reported • Other care not reported • No control group • 17.5% lost to follow up due to discharge or death Level of evidence: 3 Quality: low</td>
</tr>
<tr>
<td>Golinko, Clark, Rennert, A., & Boulton, 2009</td>
<td>Retrospective survey of pathology reports for debrided PUs</td>
<td>Participants were consecutive patients undergoing wound debridement in a tertiary hospital (n=98 patients, 139 debrided PUs) Inclusion: undergoing PU debridement Characteristics: Participant and PU characteristics are not reported</td>
<td>Chronic wound biopsies of the skin edge, wound bed and bone were obtained.</td>
<td>Participant data for each debrided wound was recorded, with pathological findings reported at the level: epidermis dermis subcutaneous fascia tendon muscle</td>
<td>Epidermal pathology reports (n=107) 31% showed hyperkeratosis; 9% showed parakeratosis; 6% showed acanthosis; 4% showed gangrene Dermal pathology reports (n=105) 60% showed granulation tissue; 66% showed inflammation; 30% showed fibrosis; 24% showed necrosis; 4% showed gangrene</td>
<td>• No standardisation regarding PU duration or previous management • Debridement was not necessarily first debridement • Findings are based on researcher opinion rather than directly associated with the survey findings Level of evidence: 4 Quality: low</td>
</tr>
<tr>
<td>Ref</td>
<td>Type of Study</td>
<td>Sample</td>
<td>Intervention(s)</td>
<td>Outcome Measures & Length of Follow-up</td>
<td>Results</td>
<td>Limitations and comments</td>
</tr>
<tr>
<td>-----</td>
<td>---------------</td>
<td>--------</td>
<td>----------------</td>
<td>--</td>
<td>---------</td>
<td>--------------------------</td>
</tr>
</tbody>
</table>
| McCallon & Frilot, 2015 | Retrospective cohort study exploring NPWT with and without clostridial collagenase ointment (CCO) for healing pressure injuries | Participants recruited from two long term acute care hospitals in USA (n=114)
Inclusion criteria:
- Category/Stage III or IV pressure injury
- Negative Pressure wound therapy (NPWT).
- Clostridial Collagenase ointment (CCO) on the wound bed with or without | • Regimen for intervention group: NPWT as therapeutic modality, some with and some without sharp debridement (n=67)
• Regimen for control/comparison group: NPWT with CCO applied to the | • As per the long-term care facility documentation system on each dressing change.
• One of four certified nurses consistently did the dressing changes
• Pre-determined documentation protocol followed.
• NPUAP staging system | Change in BWAT over time
- The NPWT plus CCO group had significantly greater reduction in BWAT scores (-5.388±4.214 vs -3.404±4.642, p=0.022)
- The NPWT plus CCO group had significantly greater change in necrotic tissue score on BWAT (-1.766 ± | • Any limitations:
Retrospective design
Any comments on results, design, funding, conflict of interest, power: None | Level of Evidence: 3
Quality: high |

Enzymatic debridement

- Subcutaneous tissue pathology reports (n=87)
38% showed granulation tissue, 51% showed inflammation, 32% showed fibrosis, 55% showed necrosis, 11% showed gangrene

- Fascial pathology reports (n=14)
57% showed granulation tissue, 71% showed inflammation, 21% showed fibrosis, 29% showed gangrene

- Bone pathology reports (n=70)
20% showed granulation tissue, 33% showed acute osteomyelitis, 20% showed chronic osteomyelitis, 21% showed reactive bone

Study conclusions: Surgeons should debride a wound until there is an absence of hyperkeratosis in the epidermis and an absence of fibrosis in the dermis. Deep debridement of infected bone in the case of osteomyelitis is rarely associated with inhibition of soft tissue growth.
Wound Care: Data Extraction and Appraisals

<table>
<thead>
<tr>
<th>Ref</th>
<th>Type of Study</th>
<th>Sample</th>
<th>Intervention(s)</th>
<th>Outcome Measures & Length of Follow-up</th>
<th>Results</th>
<th>Limitations and comments</th>
<th>Level of Evidence</th>
<th>Quality:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gilligan et al., 2017</td>
<td>Retrospective case-control study to compare enzymatic debridement using clostridial collagenase ointment (CCO) with autolytic debridement using medicinal honey for treating pressure injuries</td>
<td>Data taken from US Wound Registry for outpatient wound centers in USA and Puerto Rico between January 1st 2007 and December 31st 2012 (n=557)</td>
<td>Intervention group – matched cases treated with CCO. (n=446) Control/comparison group – matched patients treated with honey.(n=341)</td>
<td>Primary outcome measure – complete granulation tissue formation for 100% of wound bed. Achievement of 100% granulation (binary yes/no measure) and time to achieve 100% granulation. Explanatory variables – wound and patient demographics and clinical characteristics. PU grade (NPUAP staging).</td>
<td>Number of treatments: Significantly fewer mean (± SD) treatment visits required by CCO group compared to honey 9.1±9.9 vs 12.6 ±16.6, p<0.001. Granulation results at 1 year: Significantly greater percentage of CCO treated PUs achieved 100% granulation at 1 year compared to honey treated (CCO 42.0%, honey 35.2%, p=0.025). Pressure injuries treated with CCO 38% more likely to achieve 100% granulation at one year compared to honey based on logistic regression modelling (OR 1.384, 95% CI 1.057-1.812, p = 0.018)</td>
<td>Relies on secondary data not collected specifically for research purposes. May be subject to coding errors and missing data. No control over variations in clinical practice between wound clinics.</td>
<td>3</td>
<td>moderate</td>
</tr>
</tbody>
</table>
Wound Care: Data Extraction and Appraisals

<table>
<thead>
<tr>
<th>Ref</th>
<th>Type of Study</th>
<th>Sample</th>
<th>Intervention(s)</th>
<th>Outcome Measures & Length of Follow-up</th>
<th>Results</th>
<th>Limitations and comments</th>
</tr>
</thead>
</table>
| M.J. Carter, Gilligan, Waycaster, & Fife, 2016 | Retrospective cohort study assessing effect of clostridial collagenase ointment (CCO) in conjunction with debridement in healing Category/Stage IV pressure injuries | Participant data extracted from National Wound Registry in the United States for people receiving treatment in hospital outpatient setting (n=434)
Inclusion criteria:
- Category/Stage IV pressure injury treated with CCO and debridement
- > 18 yo
- > 1 visit recorded in the registry
Exclusion:
- Only single visit recorded
- < 18 yo
- Category/Stage I, II, III and unstageable pressure injuries | CCO Group – received application of CCO in conjunction with debridement (n=202)
- Non CCO group – selective debridement only (n=232)
- Number of selective debridements similar between groups
- Frequency of debridement less in CCO group (p=0.003) | Proportion of pressure injuries healed at 1 year
- Proportion of pressure injuries healed at 2 years
- Mean time to wound closure within 2 years
- Database interrogated for period Jan 2007 to January 2013
- Utilized propensity scoring and Wound Healing Index | Significantly higher proportion of CCO treated pressure injuries achieved epithelialization at 1 year (28.2% vs 21.3%, p = 0.009).
CCO treated pressure injuries were 47% more likely to epithelialize compared to honey treated (OR 1.467, 95% CI 1.051 – 2.047, p = 0.024).
Lower mean (± SD) number of days to achieve epithelialization in CCO treated PUs at 1 year, 288.6 ±128.9 vs 308.1±116.6, (p=0.011).
Authors conclude CCO treated PUs significantly more likely to achieve 100% granulation and epithelialization at 1 year. |
- Data extracted relies on accuracy of reporting from participating hospitals.
- Adjunct treatment aside from wound care not reported.
- Design does not control for study bias despite inclusion of propensity score calculations.
- Calculation using the wound healing index compromised by wound location. | Level of Evidence: 3
Quality: low |
Wound Care: Data Extraction and Appraisals

<table>
<thead>
<tr>
<th>Ref</th>
<th>Type of Study</th>
<th>Sample</th>
<th>Intervention(s)</th>
<th>Outcome Measures & Length of Follow-up</th>
<th>Results</th>
<th>Limitations and comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>C. Waycaster & C. T. Milne, 2013</td>
<td>Two phase RCT</td>
<td>Participants were recruited in one long term care facility (n=27)</td>
<td>- Participants were randomized to receive either:</td>
<td>- Complete debridement within 42 days (Phase I)</td>
<td>- Non CCO treated PU as ref: 1.85 (95% CI 1.28 to 2.68, p=0.001)</td>
<td>- Randomization, allocation concealment not reported</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Inclusion: Stage III and IV PUs ≥ 85% necrotic tissue</td>
<td>o Hydrogel dressing (n=13)</td>
<td>- Complete wound healing by 84 days (Phase II)</td>
<td>- Hazard ratio statistically sig for the following wound locations:</td>
<td>- Participant characteristics not reported</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>o Collagenase with semi-occlusive dressing (n=14)</td>
<td>- Significantly more PUs managed with collagenase achieved complete debridement by 42 days with hydrogel (approx. 85% vs 29%, p<0.03)</td>
<td>- No sharp debridement performed</td>
<td>- No blinding</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• No sharp debridement performed</td>
<td></td>
<td>- Significantly more PUs managed with collagenase achieved complete wound healing by 84 days compared with hydrogel(69% vs 21%, p=0.02)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>All PUs irrigated, cleaned and dressed daily or more frequently</td>
<td></td>
<td>- Randomization, allocation concealment not reported</td>
<td></td>
</tr>
<tr>
<td>Alvarez et al., 2002</td>
<td>RCT comparing papain-urea to collagenase for debriding</td>
<td>Participants were recruited in (n = 28 enrolled, 26 completed)</td>
<td>• papain-urea (n=14)</td>
<td>• Outcomes measured at 2,3 and 4 weeks</td>
<td>- Non blinded outcome measurement</td>
<td>Level of Evidence: 1 Quality: moderate</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Inclusion criteria:</td>
<td>• collagenase (n=12)</td>
<td>• Percent devitalized tissue rated on a score of 50%</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• Non adherent dressing and moist-</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Characteristics:
- Mean age: 63.6 to 66 years
- No sig diff in age, gender, ambulatory status, co-morbidities (incl paralysis, pal care, CVD, diabetes, HPT).
- Sig diff in recorded race with > number Caucasians (p=0.039)
- Sig diff in wound depth > 3cm at baseline: CCO group 61.7% vs no CCO group 45.9% (p< 0.0001)
- CCO group sig > “heavy exudate” and sig lower number of heel PUs.
- No sig diff in adjunct therapy in terms of wound care.
Wound Care: Data Extraction and Appraisals

<table>
<thead>
<tr>
<th>Ref</th>
<th>Type of Study</th>
<th>Sample</th>
<th>Intervention(s)</th>
<th>Outcome Measures & Length of Follow-up</th>
<th>Results</th>
<th>Limitations and comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pullen, Popp, Volkers, & Füsgen, 2002</td>
<td>double-blind RCT comparing collagenase to fibrinolysin/deoxyribonuclease for debriding</td>
<td>Participants had Category/Stage II to IV pressure injuries (n = 135 included, n = 78 results analyzed)</td>
<td>moist saline gauze during screening period • 1-2 weeks screening before commencement then 4 week trial</td>
<td>1-6 indicating amount of wound covered</td>
<td>• Significantly greater amount of granulation (p < 0.0167) for papain-urea • healing rates were not different (p > 0.05) between groups</td>
<td>• Estimation of areas rather than measurement</td>
</tr>
</tbody>
</table>

Biological debridement

| Wilsrusmee et al., 2014 | To conduct a cohort study and a meta-analysis to assess Maggot wound therapy (MWT) effects in mixed etiology wounds (primarily diabetic foot ulcers) | For the retrospective cohort study: 111 diabetic DFU patients, who were treated at Bang Yai Hospital, Thailand from Jan. 2008 to Dec. 2009, with 1116 person-week of follow up were included in the study. Inclusion criteria: • Presence of a single wound of the foot • Ability to walk without the use of a wheelchair or other assistive device • Data were available for at least 6 months of follow-up • No gangrenous wounds, necrotizing fascitis, abscess, or osteomyelitis present. | Patients were assigned by physicians who were well trained in chronic wound care, to receive Maggot Wound Therapy (MWT) or Conventional Wound Therapy (CWT) at the out-patient clinic or in-patient wards, based on physician judgment. For the CWT group, the wound was dressed with normal saline or hydrogel and debridement was performed as judged by the treating physician. | • The wound was evaluated once/week by nurse practitioners and evaluated using digital photographic images. • Patients were followed up from treatment initiation until the end of December 2009. • The Kaplan-Meier Curve was applied to estimate the healing probability at 7 weeks, 14 weeks, 21 weeks and 28 weeks after receiving treatment. • All analysis were performed using STATA version 12.0. A p value < 0.05 was considered statistically significant, except for the | • The estimated incidence of wound healing was 5.7/100 (95% CI; 4.49, 7.32) patient week, and the median time to healing was 14 weeks. The hazard ratio (HR) of wound healing was 7.87 time significantly higher in the MWT than the CWT (p<0.001) after adjusting for duration and size of ulcers, ankle brachial index (ABI), and glycated hemoglobin (HbA1c). MWT is significantly better for wound healing and more cost-effective than CWT. | This analysis was based on the retrospective cohort study of patient in Thailand, which has different cost structure than Western countries. It should also be kept in mind that patients with less severe ulcers were more likely to assign to MWT than CWT. As a result, cost analysis might be bias. |

Biological debridement

| Biological debridement | | | | | | |

Data Tables: 2019 Guideline Update: Woundcare

© EPUAP/NPIAP/PPPIA
<table>
<thead>
<tr>
<th>Ref</th>
<th>Type of Study</th>
<th>Sample</th>
<th>Intervention(s)</th>
<th>Outcome Measures & Length of Follow-up</th>
<th>Results</th>
<th>Limitations and comments</th>
<th>Level of Evidence</th>
<th>Quality</th>
</tr>
</thead>
</table>
| Anvar & Okonkwo, 2017 | Retrospective cohort study exploring surgical sharp debridement for healing pressure injuries | Participants in nursing homes receiving skilled wound care clinic in USA (n=227, n=190 debrided) | • Indication for debridement was presence of necrosis, slough, or necrotic bioburden
 • Before debridement, oral narcotics and 20% benzocaine anesthetic
 • Bedside debridement performed by surgeons and surgical physician assistants
 • Antiseptics used at physician’s discretion
 Evaluation methods not reported | Debridement
 Sharp debridement performed on 59.5% of pressure injuries
 Mean surface area of debrided wounds was 20.76 cm²
 Wound surface area
 • 73% of debrided wounds had reduction in surface area by 12 weeks and 27% had no improvement
 • Average wound surface area reduction at 12 weeks was 40%
 • 23% of wounds completely healed at 12 weeks (mean healing time 137 days)
 • No blinded outcome measures
 • Unclear how wounds were evaluation
 • Selection process reported with minimal details
 • No confounders collected or analyzed
 • Biofilm was identified “visually” which is not possible
 • Participant details not presented (e.g. severity of wounds) | Surgical sharp debridement | Surgical sharp debridement | Indirect evidence (Mixed etiology) | 3 | low |
| Ferrer-Sola, 2017 | Observational study exploring efficacy of hydrosurgery debridement for reducing debridment time | Participants were recruited (n=39)
 Inclusion criteria:
 • Participants with slow healing wound needing rapid debridement
 Exclusion criteria:
 • Dry eschar
 • Taking systemic anticoagulants | • Wounds cleansed with saline before treatment
 • Hydrosurgery using a pressurized saline with a vacuum around the stream that removes devitalized tissue (Versajet®)
 • Commenced on lowest intensity and increased as required
 • Delivered by nurse specialist at bedside
 • Pain
 • Number of debridement sessions required
 • Wound size | Pain
 Mild-moderate pain (VAS < 5) generally reported
 Topical lidocaine used for 74% of participants, block anesthetic (9.3%), systemic analgesia (16.7%)
 Debridement sessions
 73.6% required only one session, 18.9% two sessions, 7.5% three sessions
 Number sessions correlated with baseline size (r=3.07) | Pain
 Mild-moderate pain (VAS < 5) generally reported
 Topical lidocaine used for 74% of participants, block anesthetic (9.3%), systemic analgesia (16.7%)
 Debridement sessions
 73.6% required only one session, 18.9% two sessions, 7.5% three sessions
 Number sessions correlated with baseline size (r=3.07) | Different hand pieces are used depending on wound depth
 • Risks from treatment include splash, inhalation of contaminated particles | Indirect evidence (Mixed etiology) | 3 | low |
Wound Care: Data Extraction and Appraisals

<table>
<thead>
<tr>
<th>Ref</th>
<th>Type of Study</th>
<th>Sample</th>
<th>Intervention(s)</th>
<th>Outcome Measures & Length of Follow-up</th>
<th>Results</th>
<th>Limitations and comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wolcott et al., 2010</td>
<td>Laboratory based study on animal models and application in three patients of sharp debridement for addressing biofilm</td>
<td>Participants in clinical arm were three patients with VLUs Baseline characteristics: P. aeruginosa infected (average 5.2 x 10^8 CFU/5mg bioburden)</td>
<td>One week after debridement bioburden was removed via sharp debridement sample was evaluated for ability of gentamicin to kill biofilm bacteria</td>
<td>Laboratory study</td>
<td>24 hours post-debridement Significant difference was observed between the susceptibility of day 0 pre debridement and day 1 (24 hours) (p<0.05) with all biofilms were more susceptible to antibiotic treatment 48 hours post-debridement 2/3 debridements still showed higher sensitivity to antibiotics, while one of the bioburden samples had regained resistance (p>0.05) 72 hours post-debridement same susceptibility levels as original mature biofilm</td>
<td>• Small sample • Not pressure injuries</td>
</tr>
</tbody>
</table>

Mechanical debridement

| Dowsett, Swan, & Orig, 2013 | Observational case series study investigating use of a using a monofilament fiber pad to aide accurate | • Participants recruited (n=13) Inclusion and exclusion criteria: Not reported • Participant characteristics: | • Mechanical debridement with monofilament fiber pad • Pressure ulcer at various location were debrided with the monofilament | • Data on anatomical location, estimated Category/Stage prior to debridement • Actual Category/Stage following debridement • Time to debride the wound | Classification (8/13) or 61.5% of cases were re-categorized as grade 2 after debridement Time to use device No more than 4 minutes of debridement with | • A one-off debridement with monofilament fibre pad on wound containing thick, tenacious slough is unlikely to completely remove. |

Indirect Evidence (laboratory study and clinical trial with < 10 participants, not pressure injuries)

Quality: Moderate
Wound Care: Data Extraction and Appraisals

<table>
<thead>
<tr>
<th>Ref</th>
<th>Type of Study</th>
<th>Sample</th>
<th>Intervention(s)</th>
<th>Outcome Measures & Length of Follow-up</th>
<th>Results</th>
<th>Limitations and comments</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>categorization of pressure injuries</td>
<td>• Various pressure injury location (e.g. Chest, Hip and Penis etc) were identified</td>
<td>fiber pad (Uebrssoft, Activa Health Care)</td>
<td>• Digital camera image or the Eykona Wound Measurement System 3D imaging system</td>
<td>monofilament fibre pad were required to reveal the wound bed. The use of the monofilament fiber pad in the debridement of pressure injuries allow clinician to clearly view the wound bed (correct categorization) and therefore appropriate treatment can be provided.</td>
<td>• A number of consecutive treatments with the monofilament fibre pad may be necessary. • Very small study • Inter rater reliability not established</td>
</tr>
<tr>
<td>Bale, Banks, Hagleston, & Harding, 1998</td>
<td>RCT comparing two amorphous hydrogels for debridement</td>
<td>• Participants were recruited in hospital and community settings (n=50 screened, n=38 included)</td>
<td>• Participants received either: o Group A: Amorphous hydrogel (Sterigel®) (n=21) or o Group B: amorphous hydrogel, type not specified (n=17)</td>
<td>• All gel replaced daily • All wounds received a low adherent dressing and semipermeable film to cover the hydrogel</td>
<td>Debridement Group A achieved larger size following debridement than group B (p=0.08 reported as statistically significant) • Pain No difference between groups • Skin maceration 8/21 in Group A and 9/17 in Group B were not macerated</td>
<td>• Methods of randomization and allocation concealment not reported • No blinding • Non-validated subjective outcome measurement • Participant characteristics poorly reported and unclear pressure injury severity</td>
</tr>
<tr>
<td>Colin, Kurring, Quinlan, & Yvon, 1996</td>
<td>RCT comparing hydrogel to dextranomer paste for debridement of pressure injuries</td>
<td>• Participants were recruited (n=135)</td>
<td>• Participants received either: o Hydrogel (n=67) or o Dextranomer paste (n=68)</td>
<td>• Formal wound assessment and photography at baseline and every 7 days • 21 days maximum, or until pressure injury completely cleansed</td>
<td>Percent reduction in area of non-viable tissue at day 21 Ranged from deterioration to 100% improvement in both groups, no between group differences (p=0.20)</td>
<td>• Methods of randomization and allocation concealment not reported • No blinding</td>
</tr>
</tbody>
</table>

Autolytic debridement
Wound Care: Data Extraction and Appraisals

<table>
<thead>
<tr>
<th>Ref</th>
<th>Type of Study</th>
<th>Sample</th>
<th>Intervention(s)</th>
<th>Outcome Measures & Length of Follow-up</th>
<th>Results</th>
<th>Limitations and comments</th>
<th>Level of Evidence:</th>
<th>Quality:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Burgos et al., 2000</td>
<td>RCT comparing autolytic debridement to collagenase enzymatic debridement</td>
<td>Participants were recruited from seven hospitals in Spain (n=37) Inclusion criteria: • Category/Stage IV pressure injuries</td>
<td>Participants randomized to receive: collagenase containing ointment (n=18) • hydrocolloid dressing (n=19)</td>
<td>• Percent reduction in area of non-viable tissue at day 21 • Reduction of ulcer area assessed at 1-week intervals • Pain, granulation tissue, exudate, odor</td>
<td>After 12 weeks, 83% collagenase patients and 73.7% hydrocolloid patients had wound area reduction but no difference between groups (p=0.754) • No statistically significant differences in cost, efficacy or efficiency were detected between collagenase ointment and hydrocolloid dressing</td>
<td>• Greater than 30% drop out • Methods of randomization and allocation concealment not reported • No blinding • Non-validated subjective outcome measurement</td>
<td>1</td>
<td>low</td>
</tr>
<tr>
<td>Muller, van Leen, & Bergemann, 2001</td>
<td>RCT comparing autolytic debridement to collagenase enzymatic debridement</td>
<td>Participants were recruited from a hospital in Netherlands (n=24) Inclusion criteria: • Category/Stage III pressure injuries of at least 12 months duration • Aged over 55 years</td>
<td>Participants randomized to receive: collagenase containing ointment (Novuxol®) (n=12) • hydrocolloid dressing (Duoderm®) (n=12)</td>
<td>Healing • Cost Healing Wound healing was shorter with the collagenase treatment compared with the hydrocolloid treatment (mean 10 weeks vs 14 weeks, p<0.005)</td>
<td></td>
<td>• Methods of randomization and allocation concealment not reported • No blinding • Non-validated subjective outcome measurement • Participant characteristics poorly reported and unclear pressure injury severity • Costs also reported (see below)</td>
<td>1</td>
<td>low</td>
</tr>
</tbody>
</table>

Economics

<p>| Chacon, Blanes, Borba, Rocha, & | Observational study exploring costs of wound care | Participants recruited in an ICU in Brazil (n=40) Inclusion criteria: • Aged over 18, | Not reported | Mean cost per patient calculated by adding material and labor costs | Costs • Mean topical treatment costs for Category/Stage III and IV PIIs were significantly | Minimal information on intervention | Moderate quality economic analysis |</p>
<table>
<thead>
<tr>
<th>Ref</th>
<th>Type of Study</th>
<th>Sample</th>
<th>Intervention(s)</th>
<th>Outcome Measures & Length of Follow-up</th>
<th>Results</th>
<th>Limitations and comments</th>
</tr>
</thead>
</table>
| Ferreira, 2017 | • Category/Stage III and IV pressure injuries in the sacral, ischial and trochanteric regions. Exclusion criteria:
• Category/Stage I and II PI,
• Pls in other areas than listed above
• Pls that were hemodynamically instable.
• Participant characteristics:
No significant differences in wound size between Category/Stage III and IV pressure injuries
• Mean daily topical treatment cost for Category/Stage III and IV PIs per hospitalized patient was US$ 40.83 (CI 95% US$ 28.49 to 53.17)
• Costs of topical care correlated with days in hospital (r>0.4, p<0.05) | • Daily cost taken as total cost/number hospital days
• Brazilian currency (reals R$) and then converted to US dollars in 2015 value | | | different (US $854.82 versus US$1785.35; p=0.004)
• Mean daily topical treatment cost for Category/Stage III and IV PIs per hospitalized patient was US$ 40.83 (CI 95% US$ 28.49 to 53.17)
• Costs of topical care correlated with days in hospital (r>0.4, p<0.05) | |
| Mearns et al., 2017 | Cost effectiveness of clostridial collagenase ointment (CCO) versus honey
Data taken from US Wound Registry for outpatient wound centers in USA and Puerto Rico between January 1st 2007 and December 31st 2012 (n=557)
Inclusion criteria:
• Aged over 18
• At least one record with a pressure injury diagnosis code and one subsequent recorded encounter, treated with either CCO or honey
Exclusion criteria:
• Aged less than 18
• Pressure injury healed within 2 weeks
• Treatment with both CCO and honey | Intervention group – matched cases treated with CCO. (n=446)
Control/comparison group – matched patients treated with honey. (n=341)
• Primary outcome measure – complete granulation tissue formation for 100% of wound bed. Achievement of 100% granulation (binary yes/no measure) and time to achieve 100% granulation.
• Explanatory variables – wound and patient demographics and clinical characteristics. PU grade (NPUAP staging).
• Markov model was constructed to assess the incremental cost-effectiveness ratios (ICERs). | • One-year costs (2016 US dollars): CCO $US 6,161 versus honey $US7,149 mean difference -$US988
QALWs: CCO 22.73 versus honey 21.89 mean difference 0.84 | Study clinical efficacy reported in Gilligan et al. (2017) | High quality economic analysis |
Wound Care: Data Extraction and Appraisals

<table>
<thead>
<tr>
<th>Ref</th>
<th>Type of Study</th>
<th>Sample</th>
<th>Intervention(s)</th>
<th>Outcome Measures & Length of Follow-up</th>
<th>Results</th>
<th>Limitations and comments</th>
</tr>
</thead>
</table>
| M. J. Carter, Gilligan, Waycaster, Schaum, & Fife, 2017 | Cost effectiveness (from a payer’s perspective) of adding clostridial collagenase ointment (CCO) to selective debridement compared with selective debridement alone (non-CCO) | Participant data extracted from National Wound Registry in the United States for people receiving treatment in hospital outpatient setting (n=434) | • CCO Group – received application of CCO in conjunction with debridement (n=202)
• Non CCO group – debridement only (n=232)
• Number of debridements similar between groups
• Frequency of debridement less in CCO group (p=0.003) | • quality-adjusted life weeks (QALWs) | additional 17.2 ulcer-free weeks can be gained with concurrent cost savings of $6,445 for each patient.
CCO had fewer costs ($11,151 vs $17,596) and greater ulcer-free time (33.9 vs 16.8 ulcer-free weeks)
Each ulcer-free week, there is a concurrent cost saving of $375 for CCO treatment | Study clinical efficacy reported in Carter et al. (2016) |

Participant characteristics:
- No significant differences between treatment groups in terms of explanatory variables (demographics, clinical characteristics).

Inclusion criteria:
- Category/Stage IV pressure injury treated with CCO and debridement
- > 18 yo
- > 1 visit recorded in the registry

Exclusion:
- Only single visit recorded in registry
- < 18 yo
- Category/Stage I, II, III and unstageable pressure injuries

Characteristics:
- Mean age: 63.6 to 66 years
- No sig diff in age, gender, ambulatory status, co-morbidities (incl paralysis, paliacare, CVD, diabetes, HPT).
- Sig diff in recorded race with > number Caucasians (p=0.039)
<table>
<thead>
<tr>
<th>Ref</th>
<th>Type of Study</th>
<th>Sample</th>
<th>Intervention(s)</th>
<th>Outcome Measures & Length of Follow-up</th>
<th>Results</th>
<th>Limitations and comments</th>
<th>Level of Evidence</th>
<th>Quality</th>
</tr>
</thead>
</table>
| C. Waycaster & C. Milne, 2013 | Two phase RCT | Participants were recruited in one long term care facility (n=27) | Participants were randomized to receive either:
 - Hydrogel dressing (n=13)
 - Collagenase with semi-occlusive dressing (n=14)
 - No sharp debridement performed
 - All PUs irrigated, cleaned and dressed daily or more frequently | Complete debridement within 42 days (Phase I)
 - Complete wound healing by 84 days (Phase II)
 - A Markov model was developed to determine costs | Average cost/patient for 42 days of care was $1,817 in 2012 for the collagenase group and $1,611 for the hydrogel group.
 - Days spent with a granulated wound were 3.6 times higher for collagenase (23.4 vs 6.5) than with the hydrogel.
 - The estimated cost per granulation day was approx. 3.2 times higher for hydrogel ($249) vs collagenase ($78) | Study clinical efficacy reported in Waycaster and Milne (2013)
 - Moderate quality economic analysis | 1 | low |
| Muller et al., 2001 | RCT comparing autolytic debridement to collagenase enzymatic debridement | Participants were recruited from a hospital in Netherlands (n=24) | Participants randomized to receive:
 - Collagenase containing ointment (Novuxol®) (n=12)
 - Hydrocolloid dressing (Duoderm®) (n=12) | Costs
 - Healing time
 - 14 week study | Costs
 - Average costs per patient were about 5% higher with hydrocolloid than with the collagenase-containing ointment
 - Total costs 19,389.20 Dutch gilders vs 18,619.40 Dutch gilders |
 - Methods of randomization and allocation concealment not reported
 - No blinding
 - Non-validated subjective outcome measurement
 - Participant characteristics poorly reported and unclear pressure injury severity
 - Efficacy also reported (see above) | 1 | low |
Systematic reviews for supporting discussion

<table>
<thead>
<tr>
<th>Ref</th>
<th>Type of Study</th>
<th>Sample</th>
<th>Intervention(s)</th>
<th>Outcome Measures & Length of Follow-up</th>
<th>Results</th>
<th>Limitations and comments</th>
<th>Quality of review</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hao et al., 2017</td>
<td>Systematic review on efficacy of phenytoin for topical wound care</td>
<td>3 RCTs Low or unclear risk of bias</td>
<td>○ phenytoin may stimulate fibroblast proliferation, collagen deposition, vessel ingrowth, and enhance macrophage activity as well as reduce inflammation</td>
<td>-</td>
<td>Proportion of ulcers healed within trial period (eight weeks) RR 1.33 (95% CI 0.63 to 2.78, 1 study)</td>
<td>-</td>
<td>Moderate quality review</td>
</tr>
<tr>
<td>Moore & Cowman, 2013</td>
<td>Systematic review investigating cleansing pressure injuries</td>
<td>3 RCTs of moderate or low risk of bias</td>
<td>One study compares pulsatile lavage to no lavage One study compares saline to other cleanser One small study compares water to no cleansing</td>
<td>-</td>
<td>Outcomes varied but included wound size and Pressure Sore Status Tool</td>
<td>No meta-analysis Concludes that there is some evidence for pulsatile lavage over no lavage but no particularly strong evidence for any particular technique or cleansing solution</td>
<td>High quality review</td>
</tr>
<tr>
<td>Fernandez & Griffiths, 2012</td>
<td>Systematic review with meta-analysis investigating the effectiveness of potable tap water for cleansing acute wounds (primarily lacerations)</td>
<td>11 RCTs and quasi-RCTs were included Participants in the trials ranged from 2 years to 95 years. Two trials were on paediatric samples. In no trials were the wounds PU. In 5 trials the wounds were lacerations, one trial was in open fractures, one in chronic wounds and 4 in surgical wounds. The majority of trials were set in emergency wards.</td>
<td>The trials investigated: Tap water (8 trials) Cooled boiled water (1 trial) Distilled water (1 trial) Normal saline (1 trial)</td>
<td>-</td>
<td>The primary outcome of interest was wound infection measured</td>
<td>Meta-analysis results: Tap water versus no cleansing ○ No difference in infection rate (3 RCTs, RR 1.06, 95% CI 0.07 to 16.50) ○ No difference in wound healing (2 RCTs, RR 1.26, 95% CI 0.18 to 8.66)</td>
<td>High quality review</td>
</tr>
</tbody>
</table>

Review conclusions: There is no evidence that using tap water to cleanse acute wounds in adults increases infection. However, there is not strong evidence that cleansing wounds per se increases healing or reduces infection. In the absence of potable tap water, boiled and cooled water as well as distilled water can be used as wound cleansing agents.
Table 1: Level of Evidence for Intervention Studies

<table>
<thead>
<tr>
<th>Level</th>
<th>Experimental Designs</th>
<th>Quasi-experimental design</th>
<th>Observational-analytical designs</th>
<th>Observational-descriptive studies (no control)</th>
<th>Indirect evidence</th>
</tr>
</thead>
<tbody>
<tr>
<td>Level 1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Randomized trial</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Level 2</td>
<td>Quasi-experimental</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>design</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Prospectively controlled study design</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Pre-test post-test or historic/retropective control group study</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Level 3</td>
<td>Observational-analytical designs</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Cohort study with or without control group</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Case-controlled study</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Level 4</td>
<td>Observational-descriptive studies (no control)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Observational study with no control group</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Cross-sectional study</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Case series (n=10+)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Level 5</td>
<td>Indirect evidence: studies in normal human subjects, human subjects with other types of chronic wounds, laboratory studies using animals, or computational models</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table 2: Levels of evidence for diagnostic studies in the EPUAP-NPUAP-PPPIA guideline update

<table>
<thead>
<tr>
<th>Level</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Level 1</td>
<td>Individual high quality (cross sectional) studies according to the quality assessment tools with consistently applied reference standard and blinding among consecutive persons.</td>
</tr>
<tr>
<td>Level 2</td>
<td>Non-consecutive studies or studies without consistently applied reference standards.</td>
</tr>
<tr>
<td>Level 3</td>
<td>Case-control studies or poor or non-independent reference standard.</td>
</tr>
<tr>
<td>Level 4</td>
<td>Mechanism-based reasoning, study of diagnostic yield (no reference standard). Low and moderate quality cross sectional studies.</td>
</tr>
</tbody>
</table>

Table 3: Levels of evidence for prognostic studies in the EPUAP-NPUAP-PPPIA guideline update

<table>
<thead>
<tr>
<th>Level</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Level 1</td>
<td>A prospective cohort study.</td>
</tr>
<tr>
<td>Level 2</td>
<td>Analysis of prognostic factors amongst persons in a single arm of a randomized controlled trial.</td>
</tr>
<tr>
<td>Level 3</td>
<td>Case-series or case-control studies, or low quality prognostic cohort study, or retrospective cohort study.</td>
</tr>
</tbody>
</table>

APPRAISAL FOR STUDIES PROVIDING DIRECT EVIDENCE (i.e. ELIGIBLE FOR SUPPORTING AN EVIDENCE-BASED RECOMMENDATIONS)

Each criteria on the critical appraisal forms was assessed as being fully met (Y), partially met or uncertain (U), not met/not reported/unclear (N), or not applicable (NA). Studies were generally described as high, moderate, or low quality using the following criteria:

- **High quality studies:** fully met at least 80% of applicable criteria
- ** Moderate quality studies:** fully met at least 70% of applicable criteria
- **Low quality studies:** did not fully meet at least 70% of applicable criteria
Wound Care: Data Extraction and Appraisals

RCTs

<table>
<thead>
<tr>
<th>Endnote ID</th>
<th>Author/year</th>
<th>Focussed question</th>
<th>Assignment randomised</th>
<th>Adequate concealment method</th>
<th>Subjects and investigators blinded</th>
<th>Only difference btw groups was treatment</th>
<th>Valid, reliable outcome measure</th>
<th>% drop out in study arms is reported and acceptable</th>
<th>Intention to treat analysis</th>
<th>Comparable results for multiple sites</th>
<th>Minimal bias</th>
<th>Reliable conclusions</th>
<th>Level of evidence</th>
<th>Quality</th>
</tr>
</thead>
<tbody>
<tr>
<td>5520</td>
<td>Farsaei et al., 2015</td>
<td>Y</td>
<td>N</td>
<td>N</td>
<td>Y</td>
<td>U</td>
<td>N</td>
<td>N/A</td>
<td>U</td>
<td>U</td>
<td>N/A</td>
<td>N</td>
<td>Low</td>
<td>1</td>
</tr>
<tr>
<td>16697</td>
<td>Luan et al., 2016</td>
<td>N</td>
<td>U</td>
<td>U</td>
<td>N</td>
<td>U</td>
<td>N</td>
<td>U/NA</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>Low</td>
<td>1</td>
</tr>
<tr>
<td>13977</td>
<td>Inchingolo et al., 2017</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>N</td>
<td>U/NA</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>Low</td>
<td>1</td>
</tr>
<tr>
<td>14807</td>
<td>Li et al., 2017</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>U/NA</td>
<td>Y</td>
<td>Y</td>
<td>N/A</td>
<td>U</td>
<td>Low</td>
<td>1</td>
</tr>
<tr>
<td>16319</td>
<td>Niu et al., 2016</td>
<td>N</td>
<td>Y</td>
<td>U</td>
<td>Y</td>
<td>Y</td>
<td>N</td>
<td>Y/NA</td>
<td>Y</td>
<td>N</td>
<td>Y</td>
<td>N</td>
<td>Low</td>
<td>1</td>
</tr>
<tr>
<td>16422</td>
<td>Stephen et al., 2016</td>
<td>Y</td>
<td>Y</td>
<td>N</td>
<td>N</td>
<td>Y</td>
<td>Y</td>
<td>Y/NA</td>
<td>N</td>
<td>Y</td>
<td>N</td>
<td>N</td>
<td>Low</td>
<td>1</td>
</tr>
<tr>
<td>7861</td>
<td>Farsaei et al., 2014</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>N/NA</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>N</td>
<td>High</td>
<td>1</td>
</tr>
</tbody>
</table>

CROSS SECTIONAL/SURVEY/PREVALENCE STUDIES/OBSERVATIONAL

<table>
<thead>
<tr>
<th>Endnote ID</th>
<th>Author/year</th>
<th>Focussed question</th>
<th>Sampling method</th>
<th>Representative sample</th>
<th>States number invited</th>
<th>Clear outcome measures</th>
<th>Valid, reliable measurement</th>
<th>Comparable results for multiple sites</th>
<th>Confounders identified and accounted for</th>
<th>Minimal bias</th>
<th>Reliable conclusions</th>
<th>Level of evidence</th>
<th>Quality</th>
</tr>
</thead>
<tbody>
<tr>
<td>16538</td>
<td>Buzzi et al., 2016</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>Y</td>
<td>N/NA</td>
<td>N/NA</td>
<td>U/NA</td>
<td>N/A</td>
<td>N</td>
<td>Low</td>
<td>1</td>
</tr>
<tr>
<td>1886</td>
<td>Dowsett et al., 2013</td>
<td>N</td>
<td>U</td>
<td>N</td>
<td>U</td>
<td>Y</td>
<td>N/NA</td>
<td>N/NA</td>
<td>U/NA</td>
<td>N/A</td>
<td>N</td>
<td>Low</td>
<td>1</td>
</tr>
</tbody>
</table>
CASE SERIES

Author/year	Focused question	Comparable source populations	States number invited	Likelihood of outcome at enrolment	Per cent drop out in study arms is reported	Comparison btw drop outs and participants	Clear outcome measures	Assessment blinded, or discuss potential bias	Valid, reliable assessment with supporting reference	More than one measure of exposure	Confounders identified and accounted for	Provides confidence intervals	Minimal bias	Reliable conclusions	Level of evidence	Quality	
8096 Tickle, 2015	Y	Y	Y	N	N	Y	U	U	Y	N	N	N	N	N	N	4	low

COHORT STUDIES

Author/year	Focused question	Comparable source populations	States number invited	Likelihood of outcome at enrolment	Per cent drop out in study arms is reported	Comparison btw drop outs and participants	Clear outcome measures	Assessment blinded, or discuss potential bias	Valid, reliable assessment with supporting reference	More than one measure of exposure	Confounders identified and accounted for	Provides confidence intervals	Minimal bias	Reliable conclusions	Level of evidence	Quality	
9751 Furuta et al., 2015	N	Y	Y	N	Y	Y	N	N	N	N	N	Y	N	N	N	3	low
9135 McCallon & Frilot, 2015	Y	Y	Y	U	NA	NA	Y	N	Y	Y	Y	Y	Y	Y	Y	3	High
16988 Anvar & Okonkwo, 2017	Y	NA	N	N	NA	NA	N	N	N	N	N	N	N	N	U	3	Low
16304 M.J. Carter et al., 2016	Y	U	NA	NA	NA	NA	Y	U	U	Y	Y	Y	Y	N	N	3	Low
7924 Liu et al., 2013	N	Y	N	NA	Y	N	N	U	U	U	N	N	N	N	N	3	Low
CASE CONTROL STUDIES

<table>
<thead>
<tr>
<th>Author/year</th>
<th>Focussed question</th>
<th>Comparable source populations</th>
<th>Same exclusion cases and controls</th>
<th>Per cent drop out in study arms is reported</th>
<th>Comparison b/w participants and non-participants</th>
<th>Cases clearly defined</th>
<th>Established that controls are non-cases</th>
<th>Knowledge of primary exposure not influence case</th>
<th>Valid, reliable assessment of exposure and outcome</th>
<th>Confounders identified and accounted for</th>
<th>Provides confidence intervals</th>
<th>Minimal bias</th>
<th>Reliable conclusions</th>
<th>Level of evidence</th>
<th>Quality</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gilligan et al., 2017</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>NA</td>
<td>NA</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>N</td>
<td>Y</td>
<td>U</td>
<td>3</td>
<td>Moderate</td>
</tr>
</tbody>
</table>

QUASI EXPERIMENTAL STUDIES

<table>
<thead>
<tr>
<th>Author/year</th>
<th>Focussed question</th>
<th>Subjects and investigators blinded</th>
<th>Groups comparable at commencement</th>
<th>Only</th>
<th>Valid, reliable outcome measurement</th>
<th>Per cent drop out in study arms is reported and acceptable</th>
<th>Intention to treat analysis</th>
<th>Comparable results for multiple sites</th>
<th>Minimal bias</th>
<th>Reliable conclusions</th>
<th>Level of evidence</th>
<th>Quality</th>
</tr>
</thead>
<tbody>
<tr>
<td>Saidkhani et al., 2016</td>
<td>Y</td>
<td>N</td>
<td>Y</td>
<td>Y</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>U</td>
<td>N</td>
<td>N</td>
<td>2</td>
<td>low</td>
</tr>
</tbody>
</table>

ECONOMIC EVALUATIONS

<table>
<thead>
<tr>
<th>Author/year</th>
<th>Focussed question</th>
<th>Economic importance of question is clear</th>
<th>Choice of study design is justified</th>
<th>All costs are included and measured and valued appropriately</th>
<th>Outcome measures to answer study question are relevant and measured and valued appropriately</th>
<th>Discounting of future costs and outcome measures is performed correctly when appropriate</th>
<th>Assumptions explicit and sensitivity analysis conducted</th>
<th>Results provide information relevant for policy providers</th>
<th>Minimal bias</th>
<th>Reliable conclusions</th>
<th>Level of evidence</th>
<th>Quality</th>
</tr>
</thead>
<tbody>
<tr>
<td>M. J. Carter et al., 2017</td>
<td>Y</td>
<td>U</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>NA</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>U</td>
<td>NA</td>
</tr>
<tr>
<td>Chacon et al., 2017</td>
<td>Y</td>
<td>N</td>
<td>N</td>
<td>Y</td>
<td>Y</td>
<td>NA</td>
<td>Y</td>
<td>Y</td>
<td>N</td>
<td>Y</td>
<td>U</td>
<td>NA</td>
</tr>
<tr>
<td>Mearns et al., 2017</td>
<td>Y</td>
<td>N</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>NA</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>NA</td>
</tr>
<tr>
<td>C. Waycaster & C. Milne, 2013</td>
<td>Y</td>
<td>N</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>NA</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>U</td>
<td>NA</td>
<td>Moderate</td>
</tr>
</tbody>
</table>

SYSTEMATIC REVIEWS FOR DISCUSSION
Wound Care: Data Extraction and Appraisals

RATING CRITERIA:
1 Partial yes: states review question, search strategy, in/exclusion criteria and risk of bias were a-priori; full yes: meta-analysis/synthesis plan, investigation of heterogeneity and justification for protocol deviation
2 Partial yes: At least 2 databases, provides keywords and search, justifies publication restrictions; full yes: searched reference lists of included studies, searched trial registries, consulted experts in field, searched grey literature, search within 24 months of review completion
3 At least two reviewers independently agreed on selection of studies to include or reviewers achieved 80% agreement on a sample of studies
4 Either two reviewers did data extraction and had >80% agreement, or two reviewers reached consensus on data to extract
5 Partial yes: list of all relevant studies that were read and excluded; full yes: every study that was excluded is independently justified
6 Partial yes: described populations, interventions, comparators, outcomes and research design; full yes: detailed descriptions of same plus study setting and timeframe for follow-up
7 FOR RCTS Partial yes: appraised risk of bias from un-concealed allocation and lack of blinding; full yes: appraised risk of bias on true randomisation, selection of reported result from multiple measurements/analyses
FOR non randomised studies: Partial yes: appraised confounding and selection bias; full yes: appraised methods to ascertain exposures and outcomes, selection of reported result from multiple measurements/analyses
8 Must include reporting of the source of funding of individual studies, or reports that the reviewers considered this even if individual funding sources aren’t listed in review

<table>
<thead>
<tr>
<th>Endnote ID</th>
<th>Author/year</th>
<th>PICO research question and inclusion criteria</th>
<th>Rationale for selection of study designs</th>
<th>Comprehensive search</th>
<th>Duplicate study selection</th>
<th>Excluded studies listed</th>
<th>Adequate description of included studies</th>
<th>Risk of bias assessed</th>
<th>Source of funding reported</th>
<th>Appropriate meta-analysis including weighting and adjustment for heterogeneity</th>
<th>Meta-analysis considers risk of bias of studies</th>
<th>Discussion considers risk of bias of studies</th>
<th>Assessment of publication bias if quantitative analysis is done</th>
<th>Potential conflicts of interest of authors reported and managed</th>
<th>Review Quality</th>
</tr>
</thead>
<tbody>
<tr>
<td>7689</td>
<td>Firmino et al., 2014</td>
<td>N N N</td>
<td>N</td>
<td>U</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>Y</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>N</td>
</tr>
<tr>
<td>8333</td>
<td>Xu, Xiong, Yang, Li, & Mao, 2015</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>Y</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>N</td>
</tr>
<tr>
<td>79339</td>
<td>Zhang et al., 2013</td>
<td>Y</td>
<td>N</td>
<td>Y</td>
<td>N</td>
<td>N</td>
<td>Y</td>
<td>Y</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>N</td>
</tr>
<tr>
<td>14168</td>
<td>Patry & Blanchette, 2017</td>
<td>Y</td>
<td>N</td>
<td>Y</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>Y</td>
<td>Y</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>N</td>
</tr>
</tbody>
</table>
References

Fernandez, R., & Griffiths, R. (2012). Water for wound cleansing Cochrane Database of Systematic Reviews, 2(Art. No.: CD003861)

Data Tables: 2019 Guideline Update: Woundcare

© EPUAP/NPIAP/PPPIA
Wound Care: Data Extraction and Appraisals

Li, W., Ma, Y., Yang, Q., Pan, Y., & Meng, Q. (2017). Moist exposed burn ointment for treating pressure ulcers. *Medicine (United States)*, 96(29) ([no pagination](e7582)).

Wound Care: Data Extraction and Appraisals

